Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Biochem Biophys Res Commun ; 710: 149883, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38588611

RESUMO

Congenital heart diseases are the most common birth defects around the world. Emerging evidence suggests that mitochondrial homeostasis is required for normal heart development. In mitochondria, a series of molecular chaperones including heat shock protein 60 (HSP60) are engaged in assisting the import and folding of mitochondrial proteins. However, it remains largely obscure whether and how these mitochondrial chaperones regulate cardiac development. Here, we generated a cardiac-specific Hspd1 deletion mouse model by αMHC-Cre and investigated the role of HSP60 in cardiac development. We observed that deletion of HSP60 in embryonic cardiomyocytes resulted in abnormal heart development and embryonic lethality, characterized by reduced cardiac cell proliferation and thinner ventricular walls, highlighting an essential role of cardiac HSP60 in embryonic heart development and survival. Our results also demonstrated that HSP60 deficiency caused significant downregulation of mitochondrial ETC subunits and induced mitochondrial stress. Analysis of gene expression revealed that P21 that negatively regulates cell proliferation is significantly upregulated in HSP60 knockout hearts. Moreover, HSP60 deficiency induced activation of eIF2α-ATF4 pathway, further indicating the underlying mitochondrial stress in cardiomyocytes after HSP60 deletion. Taken together, our study demonstrated that regular function of mitochondrial chaperones is pivotal for maintaining normal mitochondrial homeostasis and embryonic heart development.


Assuntos
Chaperonina 60 , Cardiopatias Congênitas , Animais , Camundongos , Chaperonina 60/genética , Chaperonina 60/metabolismo , Cardiopatias Congênitas/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Miócitos Cardíacos/metabolismo
2.
J Proteome Res ; 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38619924

RESUMO

As people age, their ability to resist injury and repair damage decreases significantly. Platelet-rich plasma (PRP) has demonstrated diverse therapeutic effects on tissue repair. However, the inconsistency of patient outcomes poses a challenge to the practical application of PRP in clinical practice. Furthermore, a comprehensive understanding of the specific impact of aging on PRP requires a systematic investigation. We derived PRP from 6 young volunteers and 6 elderly volunteers, respectively. Subsequently, 95% of high-abundance proteins were removed, followed by mass spectrometry analysis. Data are available via ProteomeXchange with the identifier PXD050061. We detected a total of 739 proteins and selected 311 proteins that showed significant differences, including 76 upregulated proteins in the young group and 235 upregulated proteins in the elderly group. Functional annotation and enrichment analysis unveiled upregulation of proteins associated with cell apoptosis, angiogenesis, and complement and coagulation cascades in the elderly. Conversely, IGF1 was found to be upregulated in the young group, potentially serving as the central source of enhanced cell proliferation ability. Our investigation not only provides insights into standardizing PRP preparation but also offers novel strategies for augmenting the functionality of aging cells or tissues.

3.
Theranostics ; 14(5): 2246-2264, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38505620

RESUMO

Aim: Adipose tissue (AT) dysfunction that occurs in both obesity and lipodystrophy is associated with the development of cardiomyopathy. However, it is unclear how dysfunctional AT induces cardiomyopathy due to limited animal models available. We have identified vacuolar H+-ATPase subunit Vod1, encoded by Atp6v0d1, as a master regulator of adipogenesis, and adipose-specific deletion of Atp6v0d1 (Atp6v0d1AKO) in mice caused generalized lipodystrophy and spontaneous cardiomyopathy. Using this unique animal model, we explore the mechanism(s) underlying lipodystrophy-related cardiomyopathy. Methods and Results: Atp6v0d1AKO mice developed cardiac hypertrophy at 12 weeks, and progressed to heart failure at 28 weeks. The Atp6v0d1AKO mouse hearts exhibited excessive lipid accumulation and altered lipid and glucose metabolism, which are typical for obesity- and diabetes-related cardiomyopathy. The Atp6v0d1AKO mice developed cardiac insulin resistance evidenced by decreased IRS-1/2 expression in hearts. Meanwhile, the expression of forkhead box O1 (FoxO1), a transcription factor which plays critical roles in regulating cardiac lipid and glucose metabolism, was increased. RNA-seq data and molecular biological assays demonstrated reduced expression of myocardin, a transcription coactivator, in Atp6v0d1AKO mouse hearts. RNA interference (RNAi), luciferase reporter and ChIP-qPCR assays revealed the critical role of myocardin in regulating IRS-1 transcription through the CArG-like element in IRS-1 promoter. Reducing IRS-1 expression with RNAi increased FoxO1 expression, while increasing IRS-1 expression reversed myocardin downregulation-induced FoxO1 upregulation in cardiomyocytes. In vivo, restoring myocardin expression specifically in Atp6v0d1AKO cardiomyocytes increased IRS-1, but decreased FoxO1 expression. As a result, the abnormal expressions of metabolic genes in Atp6v0d1AKO hearts were reversed, and cardiac dysfunctions were ameliorated. Myocardin expression was also reduced in high fat diet-induced diabetic cardiomyopathy and palmitic acid-treated cardiomyocytes. Moreover, increasing systemic insulin resistance with rosiglitazone restored cardiac myocardin expression and improved cardiac functions in Atp6v0d1AKO mice. Conclusion: Atp6v0d1AKO mice are a novel animal model for studying lipodystrophy- or metabolic dysfunction-related cardiomyopathy. Moreover, myocardin serves as a key regulator of cardiac insulin sensitivity and metabolic homeostasis, highlighting myocardin as a potential therapeutic target for treating lipodystrophy- and diabetes-related cardiomyopathy.


Assuntos
Cardiomiopatias Diabéticas , Insuficiência Cardíaca , Resistência à Insulina , Lipodistrofia , Proteínas Nucleares , Transativadores , ATPases Vacuolares Próton-Translocadoras , Animais , Camundongos , Cardiomiopatias Diabéticas/genética , Modelos Animais de Doenças , Glucose/metabolismo , Resistência à Insulina/genética , Lipídeos , Obesidade/metabolismo , ATPases Vacuolares Próton-Translocadoras/metabolismo , Proteínas Substratos do Receptor de Insulina/metabolismo
4.
Life Sci ; 341: 122484, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38311219

RESUMO

AIMS: Lipids are essential cellular components with many important biological functions. Disturbed lipid biosynthesis and metabolism has been shown to cause cardiac developmental abnormality and cardiovascular diseases. In this study, we aimed to investigate the composition and the molecular profiles of lipids in mammalian hearts between embryonic and adult stages and uncover the underlying links between lipid and cardiac development and maturation. MATERIALS AND METHODS: We collected mouse hearts at the embryonic day 11.5 (E11.5), E15.5, and the age of 2 months, 4 months and 10 months, and performed lipidomic analysis to determine the changes of the composition, molecular species, and relative abundance of cardiac lipids between embryonic and adult stages. Additionally, we also performed the electronic microscopy and RNA sequencing in both embryonic and adult mouse hearts. KEY FINDINGS: The relative abundances of certain phospholipids and sphingolipids including cardiolipin, phosphatidylglycerol, phosphatidylethanolamine, and ceramide, are different between embryonic and adult hearts. Such lipidomic changes are accompanied with increased densities of mitochondrial membranes and elevated expression of genes related to mitochondrial formation in adult mouse hearts. We also analyzed individual molecular species of phospholipids and sphingolipids, and revealed that the composition and distribution of lipid molecular species in hearts also change with development. SIGNIFICANCE: Our study provides not only a lipidomic view of mammalian hearts when developing from the embryonic to the adult stage, but also a potential pool of lipid indicators for cardiac cell development and maturation.


Assuntos
Lipidômica , Fosfolipídeos , Animais , Camundongos , Fosfolipídeos/metabolismo , Esfingolipídeos/metabolismo , Coração , Feto/metabolismo , Mamíferos/metabolismo
5.
Environ Sci Pollut Res Int ; 30(59): 124195-124203, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37996582

RESUMO

Glyphosate-based herbicides (GBHs) are used extensively around the world and have become the leading agrochemicals. However, study about the association between glyphosate exposure and the risk of diabetes mellitus (DM) is scarce. This study used 4 years of NHANES data (2013-2016) to further investigate the association. A total of 2535 participants were enrolled in this cross-sectional study. The baseline information and urinary glyphosate levels in diabetic and non-diabetic groups were compared. Using multivariable logistic regression mode, we explored the association between both the continuous and categorical forms of urinary glyphosate and DM risk. Further subgroup analyses based on categorical covariates were also conducted. Urinary glyphosate levels were 0.42 ng/ml in participants with diabetes and 0.34 ng/ml in participants without diabetes (P < 0.05). As a continuous variable, ln-transformed urinary glyphosate was significantly associated with an increased risk of DM in the most adjusted model (OR 1.28, 95% CI 1.03-1.57). However, the association was not significant in the most adjusted categorical model (P > 0.05).In further subgroup analyses, the associations remained significant in several subgroups. This study provides new evidence that glyphosate exposure was associated with a higher risk of diabetes in the American general adult population.


Assuntos
Diabetes Mellitus , Herbicidas , Adulto , Humanos , Estados Unidos , Estudos Transversais , Glicina , Inquéritos Nutricionais , Diabetes Mellitus/epidemiologia
6.
Front Psychiatry ; 14: 1166689, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37799396

RESUMO

Background: Observational studies have reported the association between fatigue and coronary artery disease (CAD), but the causal association between fatigue and CAD is unclear. Method: We conducted a bidirectional Mendelian randomization (MR) study using publicly available genome-wide association studies (GWAS) data. The inverse-variance weighted (IVW) method was used as the primary analysis. We performed three complementary methods, including weighted median, MR-Egger regression, and MR pleiotropy residual sum and outlier (MR-PRESSO) to evaluate the sensitivity and horizontal pleiotropy of the results. Result: Self-reported fatigue had a causal effect on coronary artery atherosclerosis (CAA) (OR 1.047, 95%CI 1.033-1.062), myocardial infarction (MI) (OR 1.027 95%CI 1.014-1.039) and coronary heart disease (CHD) (OR 1.037, 95%CI 1.021-1.053). We did not find a significant reverse causality between self-reported fatigue and CAD. Given the heterogeneity revealed by MR-Egger regression, we employed the IVW random effect model. For the examination of fatigue on CHD and the reverse analysis of CAA, and MI on fatigue, the MR-PRESSO test found horizontal pleiotropy. No significant outliers were found. Conclusion: The MR analysis reveals a causal relationship between self-reported fatigue and CAD. The results should be interpreted with caution due to horizontal pleiotropy.

7.
Front Cardiovasc Med ; 10: 1192664, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37671135

RESUMO

Background: Although observational studies have shown that patients who experienced transient ischemic attacks (TIAs) had a higher risk of coronary artery disease (CAD), the causal relationship is ambiguous. Methods: We conducted a two-sample Mendelian randomization (MR) study to analyze the causal relationship between TIA and CAD using data from the FinnGen genome-wide association study. Analysis was performed using the inverse-variance weighted (IVW) method. The robustness of the results was evaluated using MR-Egger regression, the weighted median, MR pleiotropy residual sum, and outlier (MR-PRESSO) and multivariable MR analysis. Results: Results from IVW random-effect model showed that TIA was associated with an increased risk of coronary artery atherosclerosis (OR 1.17, 95% CI 1.06-1.28, P = 0.002), ischemic heart disease (OR 1.15, 95% CI 1.04-1.27, P = 0.007), and myocardial infarction (OR1.15, 95% CI 1.02-1.29, P = 0.025). In addition, heterogeneity and horizontal pleiotropy were observed in the ischemic heart disease results, while the sensitivity analysis revealed no evidence of horizontal pleiotropy in other outcomes. Conclusions: This MR study demonstrated a potential causal relationship between TIA and CAD. Further research should be conducted to investigate the mechanism underlying the association.

8.
Front Med (Lausanne) ; 10: 1185303, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37727764

RESUMO

Background: Sjögren's syndrome (SS) is a chronic autoimmune disease characterized by exocrine and extra-glandular symptoms. The literature indicates that SS is an independent risk factor for atherosclerosis (AS); however, its pathophysiological mechanism remains undetermined. This investigation aimed to elucidate the crosstalk genes and pathways influencing the pathophysiology of SS and AS via bioinformatic analysis of microarray data. Methods: Microarray datasets of SS (GSE40611) and AS (GSE28829) were retrieved from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) were acquired using R software's "limma" packages, and the functions of common DEGs were determined using Gene Ontology and Kyoto Encyclopedia analyses. The protein-protein interaction (PPI) was established using the STRING database. The hub genes were assessed via cytoHubba plug-in and validated by external validation datasets (GSE84844 for SS; GSE43292 for AS). Gene set enrichment analysis (GSEA) and immune infiltration of hub genes were also conducted. Results: Eight 8 hub genes were identified using the intersection of four topological algorithms in the PPI network. Four genes (CTSS, IRF8, CYBB, and PTPRC) were then verified as important cross-talk genes between AS and SS with an area under the curve (AUC) ≥0.7. Furthermore, the immune infiltration analysis revealed that lymphocytes and macrophages are essentially linked with the pathogenesis of AS and SS. Moreover, the shared genes were enriched in multiple metabolisms and autoimmune disease-related pathways, as evidenced by GSEA analyses. Conclusion: This is the first study to explore the common mechanism between SS and AS. Four key genes, including CTSS, CYBB, IRF8, and PTPRC, were associated with the pathogenesis of SS and AS. These hub genes and their correlation with immune cells could be a potential diagnostic and therapeutic target.

9.
Biomacromolecules ; 24(9): 4240-4252, 2023 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-37585281

RESUMO

Bionic mimics using natural cartilage matrix molecules can modulate the corresponding metabolic activity by improving the microenvironment of chondrocytes. A bionic brush polymer, HA/PX, has been found to reverse the loss of cartilage extracellular matrix (ECM) and has promising applications in the clinical treatment of osteoarthritis (OA). However, the unknown bioremediation mechanism of HA/PX severely hinders its clinical translation. In OA, the massive loss of the ECM may be attributed to a decrease in transient receptor potential vanilloid 4 (TRPV4) activity, which affects reactive oxygen species (ROS) clearance and [Ca2+]i signaling, initiating downstream catabolic pathways. In this study, we investigated the bioremediation mechanism of HA/PX in a model of interleukin 1ß (IL-1ß)-induced inflammation. Through TRPV4, HA/PX reduced ROS accumulation in chondrocytes and enhanced [Ca2+]i signaling, reflecting a short-term protection capacity for chondrocytes. In addition, HA/PX balanced the metabolic homeostasis of chondrocytes via TRPV4, including promoting the secretion of type II collagen (Col-II) and aggrecan, the major components of the ECM, and reducing the expression of matrix metal-degrading enzyme (MMP-13), exerting long-term protective effects on chondrocytes. Molecular dynamics (MD) simulations showed that HA/PX could act as a TRPV4 activator. Our results suggest that HA/PX can regulate chondrocyte homeostasis via ROS/Ca2+/TRPV4, thereby improving cartilage regeneration. Because the ECM is a prevalent feature of various cell types, HA/PX holds promising potential for improving regeneration and disease modification for not only cartilage-related healthcare but many other tissues and diseases.


Assuntos
Antineoplásicos , Cartilagem Articular , Osteoartrite , Humanos , Condrócitos/metabolismo , Ácido Hialurônico/farmacologia , Canais de Cátion TRPV/metabolismo , Canais de Cátion TRPV/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Biomimética , Osteoartrite/tratamento farmacológico , Interleucina-1beta/metabolismo , Antineoplásicos/farmacologia , Homeostase , Cartilagem Articular/metabolismo , Células Cultivadas
10.
Endocr Connect ; 12(8)2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37183926

RESUMO

Background: Heart failure (HF) is a complex and multifactorial syndrome caused by impaired heart function. The high morbidity and mortality of HF cause a heavy burden of illness worldwide. Non-thyroidal illness syndrome (NTIS) refers to aberrant serum thyroid parameters in patients without past thyroid disease. Observational studies have indicated that NTIS is associated with a higher risk of all-cause mortality in HF. This meta-analysis aimed to investigate the association between NTIS and HF prognosis. Methods: Medline, Embase, Web of Science, and the Cochrane database were searched for any studies reporting an association between NTIS and HF prognosis from inception to 1 July 2022. A meta-analysis was then performed. The quality of studies was assessed using the Newcastle-Ottawa Scale. The heterogeneity of the results was assessed with I2 and Cochran's Q statistics. Sensitivity analysis and publication bias analysis were also conducted. Results: A total of 626 studies were retrieved, and 18 studies were finally included in the meta-analysis. The results showed that NTIS in HF patients was significantly associated with an increased risk of all-cause mortality and major cardiovascular events (MACE), but not with in-hospital mortality. The stability of the data was validated by the sensitivity analysis. There was no indication of a publication bias in the pooled results for all-cause mortality and MACE. Conclusions: This meta-analysis showed that NTIS was associated with a worse outcome in HF patients. However, the association between NTIS and in-hospital mortality of HF patients requires further investigation.

11.
Aging (Albany NY) ; 15(10): 4533-4559, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37253634

RESUMO

The 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFK-2/FBPase-2, PFKFB3) is a glycolysis regulatory enzyme and plays a key role in oncogenesis of several cancers. However, the systematic study of crosstalk between PFKFB3 and Tumor microenvironment (TME) in pan-cancer has less been examined. In this study, we conducted a comprehensive analysis of the relationship between PFKFB3 expression, patient prognostic, Tumor mutational burden (TMB), Microsatellite instability (MSI), DNA mismatch repair (MMR), and especially TME, including immune infiltration, immune regulator, and immune checkpoint, across 33 types of tumors using datasets of The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO). We found that PFKFB3 expression was significantly correlated with patient prognostic and TME factors in various tumors. Moreover, we confirmed that PFKFB3 was an independent prognostic factor for kidney renal papillary cell carcinoma (KIRP), and established a risk prognostic model based on the expression of PFKFB3 as a clinical risk factor, which has a good predictive ability. Our study indicated that PFKFB3 is a potent regulatory factor for TME and has the potential to be a valuable prognostic biomarker in human tumor therapy.


Assuntos
Biomarcadores Tumorais , Neoplasias , Humanos , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Glicólise/genética , Neoplasias/diagnóstico , Neoplasias/genética , Neoplasias/metabolismo , Fosfofrutoquinase-2/genética , Fosfofrutoquinase-2/metabolismo , Prognóstico , Microambiente Tumoral/genética
12.
Int J Mol Sci ; 24(2)2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36674797

RESUMO

Heart failure is the final stage of various cardiovascular diseases and seriously threatens human health. Increasing mediators have been found to be involved in the pathogenesis of heart failure, including the RNA binding protein RBFox2. It participates in multiple aspects of the regulation of cardiac function and plays a critical role in the process of heart failure. However, how RBFox2 itself is regulated remains unclear. Here, we dissected transcriptomic signatures, including mRNAs and miRNAs, in a mouse model of heart failure after TAC surgery. A global analysis showed that an asymmetric alternation in gene expression and a large-scale upregulation of miRNAs occurred in heart failure. An association analysis revealed that the latter not only contributed to the degradation of numerous mRNA transcripts, but also suppressed the translation of key proteins such as RBFox2. With the aid of Ago2 CLIP-seq data, luciferase assays verified that RBFox2 was targeted by multiple miRNAs, including Let-7, miR-16, and miR-200b, which were significantly upregulated in heart failure. The overexpression of these miRNAs suppressed the RBFox2 protein and its downstream effects in cardiomyocytes, which was evidenced by the suppressed alternative splicing of the Enah gene and impaired E-C coupling via the repression of the Jph2 protein. The inhibition of Let-7, the most abundant miRNA family targeting RBFox2, could restore the RBFox2 protein as well as its downstream effects in dysfunctional cardiomyocytes induced by ISO treatment. In all, these findings revealed the molecular mechanism leading to RBFox2 depression in heart failure, and provided an approach to rescue RBFox2 through miRNA inhibition for the treatment of heart failure.


Assuntos
Insuficiência Cardíaca , MicroRNAs , Camundongos , Animais , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Fatores de Processamento de RNA/genética , Insuficiência Cardíaca/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Processamento Alternativo , RNA Mensageiro/genética , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo
13.
J Mol Cell Cardiol ; 175: 44-48, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36539111

RESUMO

Mitochondrial dysfunction in heart triggers an integrated stress response (ISR) through phosphorylation of eIF2α and subsequent ATF4 activation. DAP3 Binding Cell Death Enhancer 1 (DELE1) is a mitochondrial protein recently found to be critical for mediating mitochondrial stress-triggered ISR (MSR)-induced eIF2α-ATF4 pathway activation. However, the specific role of DELE1 in heart at baseline or in response to mitochondrial stress remains largely unknown. In this study, we report that DELE1 is dispensable for cardiac development and function under baseline conditions. Conversely, DELE1 is essential for mediating an adaptive response to mitochondrial dysfunction-triggered stress in the heart, playing a protective role in mitochondrial cardiomyopathy.


Assuntos
Cardiomiopatias , Mitocôndrias , Humanos , Fosforilação , Mitocôndrias/genética , Mitocôndrias/metabolismo , Cardiomiopatias/genética , Cardiomiopatias/metabolismo
14.
Genes (Basel) ; 13(10)2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36292774

RESUMO

Cardiolipin (CL) is a unique, tetra-acylated diphosphatidylglycerol lipid that mainly localizes in the inner mitochondria membrane (IMM) in mammalian cells and plays a central role in regulating mitochondrial architecture and functioning. A deficiency of CL biosynthesis and remodeling perturbs mitochondrial functioning and ultrastructure. Clinical and experimental studies on human patients and animal models have also provided compelling evidence that an abnormal CL content, acyl chain composition, localization, and level of oxidation may be directly linked to multiple diseases, including cardiomyopathy, neuronal dysfunction, immune cell defects, and metabolic disorders. The central role of CL in regulating the pathogenesis and progression of these diseases has attracted increasing attention in recent years. In this review, we focus on the advances in our understanding of the physiological roles of CL biosynthesis and remodeling from human patients and mouse models, and we provide an overview of the potential mechanism by which CL regulates the mitochondrial architecture and functioning.


Assuntos
Cardiolipinas , Mitocôndrias , Animais , Camundongos , Humanos , Cardiolipinas/metabolismo , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Mamíferos
16.
iScience ; 25(5): 104209, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35494252

RESUMO

Emerging evidence shows that metabolic regulation may be a critical mechanism in B cell activation and function. As targets of several most widely used immunosuppressants, Ca2+ signaling and calcineurin may play an important role in regulating B cell metabolism. Here, we demonstrate that IP3R-mediated Ca2+ signaling and calcineurin regulate B cell proliferation and survival by activating metabolic reprogramming in response to B cell receptor (BCR) stimulation. Both IP3R-triple-knockout (IP3R-TKO) and calcineurin inhibition dramatically suppress the metabolic switch in oxidative phosphorylation and glycolysis of stimulated B cells through regulation of glucose uptake, glycolytic enzyme expression, and mitochondrial remodeling, leading to impaired cell-cycle entry and survival. In addition, IP3R-Ca2+ acts as a master regulator of the calcineurin-MEF2C-Myc pathway in driving B cell metabolic adaptations. As genetic defects of IP3Rs were recently identified as a new class of inborn errors of immunity, these results have important implications for understanding the pathogenesis of such diseases.

17.
Int J Gen Med ; 15: 2963-2977, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35313551

RESUMO

Objective: We aimed to explore the prognostic patterns of ferroptosis-related genes in papillary renal cell carcinoma (PRCC) and investigate the relationship between ferroptosis-related genes and PRCC tumor immune microenvironment. Methods: We obtained the mRNA expression and corresponding clinical data of PRCC from the public tumor cancer genome atlas database (TCGA). The PRCC patients were randomly divided into two cohort, training cohort and verification cohort, respectively. Univariate Cox regression, LASSO Cox regression, multivariate Cox regression analysis were utilized to construct ferroptosis signature for PRCC patients. And then, risk prognostic model was established and verified. The correlation of ferroptosis-related signature with survival and immune microenvironment was systematically analyzed. Results: A 4-genes ferroptosis signature (CDKN1A, MIOX, PSAT1, and RRM2) was constructed. Multivariate Cox regression assay indicates that the risk score of ferroptosis signature was an independent prognostic indicator (HR=1.391, p<0.001). The survival curve shows that the high-risk group has a poorer prognosis than the low-risk group (p<0.001). The risk prognostic model was established based on prognostic factors of clinical-stage, hemoglobin, and risk score. The time-dependent receiver operating characteristic curve (ROC) analysis proves the predictive capacity of the ferroptosis signature, the 3 years area under the curve (AUC) is 0.890, and the 5 years AUC is 0.733. Further analysis suggested that cell cycle, pentose phosphate pathway, P53 signaling pathway were significantly enriched in the high-risk group. The significantly different fractions of dendritic cells resting, macrophage cells, and T cells follicular helper were observed in risk groups. Conclusion: This study implicates a ferroptosis signature which has a good predict capacity of the prognosis in PRCC patients. Ferroptosis-related genes may have a key role in the process of anti-tumor and serve as therapeutic targets for PRCC.

18.
Front Cardiovasc Med ; 8: 745810, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34660743

RESUMO

Sepsis, a pathology resulting from excessive inflammatory response that leads to multiple organ failure, is a major cause of mortality in intensive care units. Macrophages play an important role in the pathophysiology of sepsis. Accumulating evidence has suggested an upregulated rate of aerobic glycolysis as a key common feature of activated proinflammatory macrophages. Here, we identified a crucial role of myeloid 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (Pfkfb3), a glycolytic activator in lipopolysaccharide (LPS)-induced endotoxemia in mice. Pfkfb3 expression is substantially increased in bone marrow derived macrophages (BMDMs) treated with LPS in vitro and in lung macrophages of mice challenged with LPS in vivo. Myeloid-specific knockout of Pfkfb3 in mice protects against LPS-induced lung edema, cardiac dysfunction and hypotension, which were associated with decreased expression of interleukin 1 beta (Il1b), interleukin 6 (Il6) and nitric oxide synthase 2 (Nos2), as well as reduced infiltration of neutrophils and macrophages in lung tissue. Pfkfb3 ablation in cultured macrophages attenuated LPS-induced glycolytic flux, resulting in a decrease in proinflammatory gene expression. Mechanistically, Pfkfb3 ablation or inhibition with a Pfkfb3 inhibitor AZ26 suppresses LPS-induced proinflammatory gene expression via the NF-κB signaling pathway. In summary, our study reveals the critical role of Pfkfb3 in LPS-induced sepsis via reprogramming macrophage metabolism and regulating proinflammatory gene expression. Therefore, PFKFB3 is a potential target for the prevention and treatment of inflammatory diseases such as sepsis.

19.
PLoS Genet ; 17(9): e1009785, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34506481

RESUMO

Dysregulation of cardiac transcription programs has been identified in patients and families with heart failure, as well as those with morphological and functional forms of congenital heart defects. Mediator is a multi-subunit complex that plays a central role in transcription initiation by integrating regulatory signals from gene-specific transcriptional activators to RNA polymerase II (Pol II). Recently, Mediator subunit 30 (MED30), a metazoan specific Mediator subunit, has been associated with Langer-Giedion syndrome (LGS) Type II and Cornelia de Lange syndrome-4 (CDLS4), characterized by several abnormalities including congenital heart defects. A point mutation in MED30 has been identified in mouse and is associated with mitochondrial cardiomyopathy. Very recent structural analyses of Mediator revealed that MED30 localizes to the proximal Tail, anchoring Head and Tail modules, thus potentially influencing stability of the Mediator core. However, in vivo cellular and physiological roles of MED30 in maintaining Mediator core integrity remain to be tested. Here, we report that deletion of MED30 in embryonic or adult cardiomyocytes caused rapid development of cardiac defects and lethality. Importantly, cardiomyocyte specific ablation of MED30 destabilized Mediator core subunits, while the kinase module was preserved, demonstrating an essential role of MED30 in stability of the overall Mediator complex. RNAseq analyses of constitutive cardiomyocyte specific Med30 knockout (cKO) embryonic hearts and inducible cardiomyocyte specific Med30 knockout (icKO) adult cardiomyocytes further revealed critical transcription networks in cardiomyocytes controlled by Mediator. Taken together, our results demonstrated that MED30 is essential for Mediator stability and transcriptional networks in both developing and adult cardiomyocytes. Our results affirm the key role of proximal Tail modular subunits in maintaining core Mediator stability in vivo.


Assuntos
Complexo Mediador/metabolismo , Miócitos Cardíacos/metabolismo , Transcrição Gênica , Animais , Feminino , Masculino , Complexo Mediador/genética , Complexo Mediador/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...